Geometry
p1 p2 p3 Unit Vector (grade 1) $$e_1\quad,e_2\quad,e_3\quad,e_4\quad\dots$$ depending on the dimension used Unit Bivector (grade 2) 2D : $$\quad e_1e_2$$ 3D : $$\quad e_1e_2,\quad e_1e_3,\quad e_2e_3$$ 4D : $$\quad e_1e_2,\quad e_1e_3,\quad e_1e_4,\quad e_2e_3,\quad e_2e_4,\quad e_3e_4$$ etc. depending on dimension used Unit Trivector (grade 3) 3D : $$\quad e_1e_2e_3$$ 4D : $$\quad e_1e_2e_3,\quad e_1e_2e_4,\quad e_1e_3e_4,\quad e_2e_3e_4$$ etc. depending on dimension used 2D Setup : $$\overset{\text{scalar}}{{1}}\quad\quad\overset{\text{vector}}{\overbrace{e_1\quad\quad e_2}}\quad\quad \overset{\text{bivector}}{\overbrace{e_1e_2}}$$ $$a=a_1e_1 + a_2e_2$$ $$b=b_1e_1 + b_2e_2$$ Addition $$\begin{array}{ll}a+b&=(a_1+b_1)e_1+(a_2+b_2)e_2\end{array}$$ Multiplication (Product) Warning : not commutative $$\begin{array}{ll}ab&=(a_1b_1 + a_2b_2) + (a_1b_2 - a_2b_1)e_1e_2\end{array}$$ $$\begin{array}{ll}ab &=(a_1e_1 + a_2e_2)(b_1e_1 + b_2e_2) \\ \\ &=a_1e_1(b_1e_1 + b_2e_2) + a_...
Comments
Post a Comment