Neusis III




Proof | Hendecagon construction by Neusis

for any complex number \(z\) :

$$z + z^*\in\mathbb{R}$$
$$z z^*\in\mathbb{R}^{+}$$
$$\dfrac{\sqrt{\overset{\phantom{0}}{zz^*}}}{z^*}\in\mathbb{S}^{1}$$
$$z - z^*\in\Big\{ix\mid x\in\mathbb{R}\Big\}$$







let \(f(x)\) be \(11^{th}\) roots of unity 

$$f^x=f(x)$$

for all \(x\in\mathbb{Z}\), \(f(x)\) forms a regular heptagon on unit circle in complex plane and satisfies

$$f(x)^{11}=1$$

which factors into

$$\Big(f(x) - 1\Big)\Big(f(x)^{10} + f(x)^9 + \cdots + f(x)^2 + f(x)^1 + 1\Big)=0$$

which we can obtain from (where \(f(x)\neq1\) 

$$f(10x) + f(9x) + f(8x) + f(7x) + f(6x) + f(5x) + f(4x) + f(3x) + f(2x) + f(x) = -1$$

let

$$p(x)=f(x) + f(4x) + f(5x) + f(9x)+f(3x)$$

we have 

$$\begin{array}{lllll}p(x)&=p(4x)&=p(5x)&=p(9x)&=p(3x)\\ \\p(2x)&=p(8x)&=p(10x)&=p(7x)&=p(6x)\\ \\p(11x)&=5\end{array}$$

$$\Big(p(x)\Big)^*=p(2x)$$

$$p(x) + p(2x) = -1$$

which shows that \(p(x),p(2x)\) lies on line \(z+z^*=-1\) 

$$\begin{array}{llllllll}p(x)\cdot p(2x) &=& &f(2x)&f(8x)&f(10x)&f(7x)&f(6x)&=p(x)+p(2x)+p(2x)+5+p(x)&=3\\ \\&&f(x)&f(3x)&\ddots&\ddots&\ddots&\ddots\\ \\&&f(4x)&f(6x)&\ddots&\ddots&\ddots&\ddots\\ \\&&f(5x)&f(7x)&\ddots&\ddots&\ddots&\ddots\\ \\&&f(9x)&1&\ddots&\ddots&\ddots&\ddots\\ \\&&f(3x)&f(5x)&\ddots&\ddots&\ddots&\ddots\\ \\ \end{array}$$

which shows that \(p(x),p(2x)\) also lies on circle with radius \(\sqrt{3}\). The algebraic expression for \(p(x),p(2x)\)

$$\begin{array}{lll}2p(x)&=\Big(p(x)+p(2x)\Big)+\Big(p(x)-p(2x)\Big)&=-1+\sqrt{\overset{\phantom{0}}{-11}}\\2p(2x)&=\Big(p(x)+p(2x)\Big)-\Big(p(x)-p(2x)\Big)&=-1-\sqrt{\overset{\phantom{0}}{-11}}\end{array}$$

the neusis construction for hendecagon is quite different than neusis construction for pentagon, heptagon, that has been covered previously. Involves two verging shape instead of one line segment on a line

$$\begin{array}{llll}\phantom{=}p(x)&\text{ lies on circle at }&0\text{ radius }\sqrt{3}\\\\ \phantom{=}p(x)f(-x)&\text{ lies on circle at }&0\text{ radius }\sqrt{3}\\\\ =\Big(f(x)+f(4x)+f(9x)+f(5x)+f(3x)\Big)f(-x)\\\\ =1+f(3x)+f(8x)+f(4x)+f(2x)\\\\ \phantom{=}f(3x)+f(8x)+f(4x)+f(2x)&\text{ lies on circle at }&-1\text{ radius }\sqrt{3}\\\\\end{array}$$

$$\begin{array}{llll}0&,1&,f(3x)+f(8x)&&\in\mathbb{R}\\\\0&,1&,f(3x)+f(8x)&,f(3x)+f(8x)-1&\in\mathbb{R}\text{ are collinear}\\\\\end{array}$$

$$\begin{array}{llll}0&,1&,f(2x)+f(9x)&&\in\mathbb{R}\\\\0&,1&,f(2x)+f(9x)&,f(2x)+f(9x)+1&\in\mathbb{R}\\\\0&,f(2x)&,f(4x)+1&,f(4x)+1+f(2x)&\text{ are collinear}\\\\-1&,f(2x)-1&,f(4x)&,f(4x)+f(2x)&\text{ are collinear}\\\\-1+f(3x)+f(8x)&&,f(4x)+f(3x)+f(8x)&,f(4x)+f(2x)+f(3x)+f(8x)&\text{ are collinear}\\\\ \end{array}$$

$$\begin{array}{lllll}0&,1&f(x)+f(10x)&&&\in\mathbb{R}\\\\ 0&,1&&-1&f(x)+f(10x)+1&\in\mathbb{R}\\\\0&,f(3x)&&-f(3x)&f(4x)+f(2x)+f(3x)&\text{ are collinear}\\\\f(8x)&,f(3x)+f(8x)&&f(8x)-f(3x)&f(4x)+f(2x)+f(3x)+f(8x)&\text{ are collinear}\\\\\end{array}$$

$$\begin{array}{llllll}1&,f(3x)&,f(8x)&,f(4x)&\in\mathbb{S}^1&\text{ center }0\\\\ -1&,-f(3x)&,-f(8x)&,f(4x)&\in\mathbb{S}^1&\text{ center }0\\\\ f(3x)+f(8x)-1&,f(3x)+f(8x)-f(3x)&,f(3x)+f(8x)-f(8x)&,f(4x)+f(3x)+f(8x)&\text{ is concyclic radius 1}&\text{ with center }f(3x)+f(8x)\\\\ f(3x)+f(8x)-1&,f(8x)&,f(3x)&,f(4x)+f(3x)+f(8x)&\text{ is concyclic radius 1}&\text{ with center }f(3x)+f(8x)\\\\ \end{array}$$

in addition, the distance between \(f(8x)\) and \(f(8x)-f(3x)\) is 1

and the distance between \(f(3x)+f(8x)+f(4x)+f(2x)\) and \(f(3x)+f(8x)+f(4x)\) is 1

[in-depth details and graph visualization and figures will be provided in future. If reader need visualization in the meantime, this 5 collection of constructions , this animation (x) , or this animation (youtube) is what this post proving for]

Hendecagon | 

reader with a background in group theory might recognize that heptagon, nonagon, tridecagon constructible by angle trisection. Similarly, regular hendecagon is constructible by angle quintisection.


Comments

Popular posts from this blog

Geometry

Neusis II