this page uses \(z^*\) as an expression for complex conjugate of \(z\) Mechanism | Cline If \(l_1\) and \(l_2\) are (defined as) straight lines across two same points $$\begin{array}{lllll}\text{line } l_1\ni&a_0 & ,a_1 & ,a_2 \\ \\ \text{line } l_2 \ni&a_0 & ,a_1 & ,a_3\end{array}$$ then $$l_1 = l_2$$ If \(c_1\) and \(c_2\) are (defined as) two circles across three same points $$\begin{array} {lllll} \text{circle } c_1 \ni&a_0 & ,a_1 & ,a_2 & ,a_3 \\ \\ \text{circle } c_2 \ni&a_0 & ,a_1 & ,a_2 & ,a_4 \end{array}$$ then $$c_1 = c_2$$ ________________________________________________ addition by \(z\) corresponds to translation preserve both orientation, angle, and distance multiplication by \( z \neq 0\) corresponds to rotation centered at \( 0\) and scaling centered at \( 0\), preserves angles if \( z=z^*\) then the multiplication corresponds to pure scaling centered at \( 0\) without rotation, preserving orientation if \( zz^* =...
Proof | Hendecagon construction by Neusis for any complex number \(z\) : $$z + z^*\in\mathbb{R}$$ $$z z^*\in\mathbb{R}^{+}$$ $$\dfrac{\sqrt{\overset{\phantom{0}}{zz^*}}}{z^*}\in\mathbb{S}^{1}$$ $$z - z^*\in\Big\{ix\mid x\in\mathbb{R}\Big\}$$ let \(f(x)\) be \(11^{th}\) roots of unity $$f^x=f(x)$$ for all \(x\in\mathbb{Z}\), \(f(x)\) forms a regular heptagon on unit circle in complex plane and satisfies $$f(x)^{11}=1$$ which factors into $$\Big(f(x) - 1\Big)\Big(f(x)^{10} + f(x)^9 + \cdots + f(x)^2 + f(x)^1 + 1\Big)=0$$ which we can obtain from (where \(f(x)\neq1\) $$f(10x) + f(9x) + f(8x) + f(7x) + f(6x) + f(5x) + f(4x) + f(3x) + f(2x) + f(x) = -1$$ let $$p(x)=f(x) + f(4x) + f(5x) + f(9x)+f(3x)$$ we have $$\begin{array}{lllll}p(x)&=p(4x)&=p(5x)&=p(9x)&=p(3x)\\ \\p(2x)&=p(8x)&=p(10x)&=p(7x)&=p(6x)\\ \\p(11x)&=5\end{array}$$ $$\Big(p(x)\Big)^*=p(2x)$$ $$p(x) + p(2x) = -1$$ which shows that \(p(x),p(2x)\) lies on line \(z+z^*=-1\) ...
Comments
Post a Comment