Neusis II
Proof | Heptagon Construction by Neusis let \(f(x)\) be \(7^{th}\) roots of unity $$f^x=f(x)$$ for all \(x\in\mathbb{Z}\), \(f(x)\) forms a regular heptagon on unit circle in complex plane and satisfies $$f(x)^7=1$$ which factors into $$\Big(f(x) - 1\Big)\Big(f(x)^6 + f(x)^5 + f(x)^4 + f(x)^3 + f(x)^2 + f(x)^1 + 1\Big)=0$$ which we can obtain from (where \(f(x)\neq1\)) $$f(6x) + f(5x) + f(4x) + f(3x) + f(2x) + f(x) = -1$$ let $$p(x)=f(x) + f(2x) + f(4x)$$ we can find that $$\begin{array}{llll}p(x)&=p(2x)&=p(4x)\\ \\p(3x)&=p(6x)&=p(5x)\\ \\p(7x)&=3\end{array}$$ $$\begin{array}{ll}\Big(p(x)\Big)^*&=f(x)^*+f(2x)^*+f(4x)^*\\ \\&=f(6x)+f(5x)+f(3x)\\ \\&=p(3x)\end{array}$$ $$p(x) + p(3x) = -1$$ which shows that \(p(x), p(3x)\) lies on line \(z+z^*=-1\), and $$\begin{array}{llllllll}p(x)\cdot p(3x) &=& &f(3x) &f(6x) &(5x)&=p(x)+p(3x)+3&=2\\ \\ &&f(x)&f(4x)&1&f(6x)\\ \\ &&f(2x)&f(5x)&f(x...